
GENIUS V1.9.1
GENeration of Interface for Users of Scientific S/W

Formation

Wiki on http://genius.cnes.fr

GENIUS
GENeration of Interface for Users of Scientific S/W

Background

3

Context (1/2)

■ Since the 90’s, CNES Flight Dynamics teams has developed specific means

to build GUI for their own experts and/or operation tools. These tools were

GENESIS/MADONA/XTRACE used for example for the FDS (Flight Dynamic

Subsystem) of the ATV-CC (ATV Control Center)

■ From 2012, following the choice of new Java developments for FD tools

(thanks to SIRIUS/PATRIUS project), a first mock-up named GENIUS was

done internally using some basic GENESIS principles

■ By the end of 2013, a specific study was done. Its output was:

 A requirement specification thanks to previous GUI feedbacks,

 A recommendation to develop a specific tool as no commercial items answered to

our needs,

 Another prototype in order to get an alternative to GENIUS (even if some

concepts were common to both of them).

Flight Dynamics sub-directorate DSO/DV

Flight Dynamics sub-directorate DSO/DV

4

Context (2/2)

■Main differences between GENIUS and the prototype was:

 GENIUS:

 Direct interfacing with business data (PATRIUS ones for example)

 100% Java code approach

 Prototype:

 Data model independent of the display and the business data (MVC model)

 A code generation approach

■ In January 2014, both products have been presented to a pool of

representative users and the choice fell on GENIUS !

Flight Dynamics sub-directorate DSO/DV

5

Why GENIUS (1/4) ?

■ In Java world, basic tools, as swing, may become relatively complex to use

because it stays at a certain low level (on the opposite, it allows to do a lot

of things).

■ Moreover, GUI for flight dynamics tools (or, more generally, scientific tools)

need most of the time :

 To enter input (numerical) data from the screen or the keyboard

 To read / write these data into files

 To execute computation thanks to these data,

 To visualize results

■ GENIUS, as previously GENESIS/MADONA/XTRACE, is a higher level layer

based on swing but allowing to create more easily such GUI.

Flight Dynamics sub-directorate DSO/DV

6

Why GENIUS (2/4) ?

■ Advantages coming from GENESIS and kept with GENIUS

 Simplified approach, in particular about events management (BEFORE,
AFTER)

=> almost identical approach (even simpler …)

 Performing conditional display

=> identical approach

 Read / write for files directly integrated

=> almost identical approach

 Units management

=> almost identical approach

Flight Dynamics sub-directorate DSO/DV

7

Why GENIUS (3/4) ?

■ GENESIS drawbacks … versus GENIUS advantages

 Specific language => learning problem, confusion with Fortran and mainly
need of a code generation very time consuming

=> fully written in JAVA (absolutely no generation)

 An object approach (mandatory) that might be quite disturbing for people
using Fortran

=> fully written in JAVA (then consistency with an object approach)

 Scalability versus optional arguments, so relatively limited

=> use of heritage and possibility of direct swing functionalities

 Process management only compatible of UNIX/LINUX world

=> portability thanks to JAVA

Flight Dynamics sub-directorate DSO/DV

8

Why GENIUS (4/4) ?

 Now available outside CNES:

 Open Source (Apache 2.0 licence) via https://logiciels.cnes.fr

 Wiki on http://genius.cnes.fr

 Contact genius@cnes.fr

 CNES internally:

 Download via Artifactory :

https://tu-dctsb-p02.cst.cnes.fr:8443/artifactory/webapp/browserepo.html

 Several applications :

 PSIMU, ELECTRA, OPERA, MIPELEC (also available outside CNES)

 SIRENA, CRASH, DOORS, OSCAR/DRAGON, PAMPERO, CRABIM (CNES only)

… using also GENOPUS

GENIUS
GENeration of Interface for Users of Scientific S/W

Basic principles

Flight Dynamics sub-directorate DSO/DV

10

GFrame

■We find the same principles as those used by swing with classes as:

 GFrame

 GPanel

 …

 GButton

■About GFrame, nothing particular, except the display() method

which allows the display more easily.

GFrame frame = new GFrame("Gex1", pan);

frame.display();

GPanel (cf. following slide)

Flight Dynamics sub-directorate DSO/DV

11

GPanel (1/2)

■GPanel object is a bit more « complex » because, when created, it is

necessary to implement both following methods: generic() and

display()

 display() method will indicate which graphical objects will be displayed

 By these means, it is up to GENIUS to automatically manage refresh ; (no need to call

to a « refresh » method);

 To decide what will be displayed, we only need to call in this method, the put method

with the object as argument : put(objectName).

 generic() method allows to indicate which graphical objects will be

concerned for displaying … but also for reading or writing into files

(see later …)

 Another solution is then to store calls to the put method into generic() and,

inside display() method, only calling the generic() method …

Flight Dynamics sub-directorate DSO/DV

12

GPanel (2/2)

GPanel pan = new GPanel() {

GButton but = new GButton("Test");

public void display() {
put(but); }

public void generic() { }

}; … using display ()

GButton

GPanel pan = new GPanel() {

GButton but = new GButton("Test");

public void display() {
generic(); }

public void generic() {
put(but); }

}; … using generic ()

Flight Dynamics sub-directorate DSO/DV

13

Basic widgets

■As with GENESIS , we find again basic classes needed to build a

scientific tool GUI … in particular entering real data with units !!!

 GButton, GHyperlinkLabel

 GLabel, GImage, GSeparator

 GRadioButton, GCheckBox, GChoice, GMultipleChoice

 GComboBox, GComboBoxWithLabel

 GList , GPopupList , GPopupListWithLabel , GTree

 GEntryReal, GEntryInt, GEntryString, GDate

 GSliderWithLabel, GSliderRealWithLabel

 GTextArea (text over several lines), GConsole

 GEntryRealVector, GEntryIntVector, GEntryDateVector

 GTable1D, GTable2D, GComponentList

 GMenuBar, GMenu, GMenuItem

 And many more …

Flight Dynamics sub-directorate DSO/DV

14

Links with swing

■ GENIUS classes use swing classes but are not directly inherited from them:

 Strictly speaking, it is not recommended to directly use swing classes …

 For example JPanel rather than GPanel because, in that case, the « display » mechanism

will not be effective.

 For certain methods, an over layer is proposed by GENIUS …

 For example, setEnabled(true/false) method is applicable for a GButton object.

 But, in order not to be blocked, one can have direct calls to swing methods:

 By a call to the swing object included in the GENIUS one as for example, with the

getJButton() method which refer to the swing Jbutton object using by GButton;

 By a call to swing widgets which do not need GENIUS mechanism as JOptionPane or

JFileChooser.

GENIUS
GENeration of Interface for Users of Scientific S/W

First exercise

Flight Dynamics sub-directorate DSO/DV

16

Exercise 1 (1/2)

■Launch Eclipse:

 Create a specific workspace for example under Documents

■Create a Simple Maven Project :

 File / New / Other … / Maven Project

 Create a Simple project

 GroupId: xx.yy.zz…

 Artifact Id : FormationGenius

■Be sure to be with a 1.8 Java version

■… and link with GENIUS by adding
these lines inside the pom.xml file
and save it …

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>fr.cnes.dynvol</groupId>

<artifactId>test</artifactId>

<version>0.0.1-SNAPSHOT</version>

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

</properties>

<dependencies>

<dependency>

<groupId>fr.cnes</groupId>

<artifactId>genopus</artifactId>

<version>2.1.1</version>

</dependency>

</dependencies>

</project>

Flight Dynamics sub-directorate DSO/DV

17

Exercise 1 (2/2)

■Create a GUI with:

 A button

 An entry area for strings

 An entry area for an integer

 An entry area for a real

 A checkbox

 A label

Possibility to

change the

format with a

right click

Flight Dynamics sub-directorate DSO/DV

18

GLayout (1/5)

■ GENIUS gives a specific Layout (based

on MigLayout) well adapted to

conditional display

■ By default, every new graphic widget will be

set to the next line,

■ Based on a grid cell => be careful, the size

of a cell may depend on another

component situated below …

GPanel pan = new GPanel() {

GButton but1 = new GButton("Bouton 1");
GButton but2 = new GButton("Bouton 2");
GButton but3 = new GButton("Bouton 3");

public void display() throws GException {
put(but1);
put(but2);
put(but3);

}

public void generic() {
}

};

Determine line 1 and column 3 sizes

Determine line 3 and column 2 sizes

Determine

column 1

size Determine line 2 size

Flight Dynamics sub-directorate DSO/DV

19

GLayout (2/5)

■Some available « constraints »:

wrap [gapsize] Go to the next line after the component (gapsize => amount of pixel after it)

newline [gapsize] Go to the next line before the component (gapsize => amount of pixel before it)

skip [count] Skip one or several columns (depending of the value of count, 1 by default).

span [countx [county]]

spanx [countx]

spany [county]

Allows to the component to spread on several cells (countx for horizontal axis

and county for vertical axis)

split [count] Allows to put several components on a single cell.

flowx, flowy Direction when a component is added (flowx by default)

height, width size Specify the height (resp. width) of the component in pixel (preferred size).

push (pushx, pushy) « Push » the next components (visible when the main window is enlarged)

grow (growx, growy) Fill the cell with the component.

gap left [right] [top] [bottom]

gaptop, gapbottom, gapleft,

gapright [gap]

Specify the gap (in pixels by default).

align [alignx, aligny]

alignx, aligny [align]

Specifiy alignment: (left, center, right) for alignx and (top, center, bottom) for

aligny

Flight Dynamics sub-directorate DSO/DV

20

GLayout (3/5)

■Two ways to access to the MigLayout constraints :

 The “old fashion” (used in versions prior to V1.2) by calling now the

setStringConstraint method that wait for a String as single argument

 Not detailed here … and now obsolete

 The “new fashion” by calling now the setConstraint method, waiting for:

 A GConstraint object

 With arguments given by static methods proposed by GConstraint

but2.setConstraint(null);
but3.setConstraint(new GConstraint(GConstraint.newline() , GConstraint.width(150))));

No more “by default” way => on the same line

width 150 : button width

fixed to 150 pixels

Flight Dynamics sub-directorate DSO/DV

21

GLayout (4/5)

■We can also take into account all the objects of a given type

included in a GPanel by calling another setClassConstraint method:

■Management of some complex widgets as GEntryReal may be more

confuse than for a simple GButton as this widget is composed of

several other sub widgets :

 Sub widget 0: GLabelWithIndicator

 Sub widget 0.0: GLabel

 Sub widget 0.1: GIndicator (the "*" when the value is modified)

 Sub widget 1: GTextField

 Sub widget 2: GUnit

pan.setClassConstraint(new GConstraint(GConstraint.height(150), GButton.class));

height 50 : height of all the buttons of

the panel fixed to 50 pixels

Flight Dynamics sub-directorate DSO/DV

22

GLayout (5/5)

■With the old fashion, it was possible (more or less easily) to access

to such sub widgets using “|”, “?”, “+” syntax …

■With the new API, it is easier to explain it with the

setInnerDescendantContraint() method (and

setInnerDescendantClassContraint()),

■For example, if we want:

 to apply “newline” to the global widget

 to set 200 pixels for the textfield width

 to skip a cell to the GUnit field

GEntryReal real = new GEntryReal(...);
// Applying "newline" to the GLabel
real.setInnerDescendantConstraint(new GConstraint(GConstraint.newline(), 0, 0);
// Applying "width 200" to the texfield
real.setInnerDescendantConstraint(new GConstraint(GConstraint.width(200)), 1);
// Applying "skip"to the texfield
real.setInnerDescendantConstraint(new GConstraint(GConstraint.skip(1)), 2);

Flight Dynamics sub-directorate DSO/DV

Exercise 2

■Use the setConstraint

method to build (part

of) the following GUI:

gapbottom 20

gaptop 50

wrap 50

Special management for

widgets with multiple

components

"newline, gaptop 20, growx, spanx 99"

If we enlarged the window

23

Flight Dynamics sub-directorate DSO/DV

24

Conditional display

■Conditional display is simply managed with « if » or « switch » and

using the generic() or the display() method:

public class myPanel extends GPanel {

GButton but1;
GButton but2;
GButton but3;
GCheckBox cb;

...

public void generic() throws GException {
put(but1);
put(but2);
if (cb.isSelected()) { put(but3); }
put(cb);

}

Simple not ?

Flight Dynamics sub-directorate DSO/DV

25

GListener Interface (before / after)

■To manage actions on widgets, a single interface is avalaible: GListener

 It allows to manage notion as before / after in a more friendly way than what is

proposed by swing (download/upload management of the pile)

Action

on the

object

Object 1

Object 2

Before Object 1

Before Object 2 After Object 2

After Object 1

Pre-treatments Post-treatments

Flight Dynamics sub-directorate DSO/DV

26

GListener Interface (Before / After) c’td …

public class myPanel extends GPanel implements GListener {

GButton but1;
GButton but2;
GButton but3;

public myPanel () { ... }

public void generic() { ... }

public void display() throws GException {
generic();

}

public void before(GEvent e) {
}

public void after(GEvent e) {
if (e.contains(but1)) { System.out.println("Bouton 1"); }

}

Flight Dynamics sub-directorate DSO/DV

27

GListener Interface (sources)

■ GENIUS provides a contains() method associated to a GEvent object : this

method needs as input arguments one or several widgets and will return true if

one of these widgets have been activated (else false).

■ If we just want to recover the activated object itself, it can simply done using the

getLocalSource() method : it will return the selected widget known “locally”,

meaning existing at the current level.

■ If we are inside a GPanel P0, that includes two other GPanel P1 and P2 with P1

including two buttons, B1 and B2 …

 If we push on the B2 button, it is possible to get the object corresponding to B2 by

using the getFinalSource() method that will return it.

 So, inside P0:
 getLocalSource() will return P1

 getFinalSource() will return B2

if (e.contains(but1)) { // Case we push on the but1 button ...
... }

if (e.contains(but1, but2)) {// Case we push on but1 or but2 buttons ...
... }

Flight Dynamics sub-directorate DSO/DV

28

Exercise 3

■Create the following GUI:

Display « hello »

in the sub window below;

Disappear if the value of the

integer is equal to 0

Quit the application

Display a modal detached window where

it is written:

GENIUS Formation

EXERCICE 3

(use JOptionPane.showMessageDialog)

Send an error message if the

input value is < 0 and display

the previous value

Use GConsole

Note that a “*” appears when

data has changed

GENIUS
GENeration of Interface for Users of Scientific S/W

Continued …

Flight Dynamics sub-directorate DSO/DV

30

Units management

■Units are managed with the GUnit class or more directly with GMetricUnit.

■ In case of using GMetricUnit, when we define a unit for a real value, it is

stored automatically in the computer memory in SI (m, kg, rad …)

GUnit[] unitDis = { new GMetricUnit ("km") ,
new GMetricUnit ("nmi") };

dist = new GEntryReal("Distance", 10000., unitDis);

double val = dist.getValue(); // Always in SI

■Thus, in that case, we may have a difference

between what it is displayed (10.0) and what it

is actually stored in the memory (10000.).

■To get the value stored in memory (same for an integer):

Flight Dynamics sub-directorate DSO/DV

31

GContainer (1/2)

■When we want to merge several basic widgets (for example several

GEntryReal), we can encapsulate them inside a GPanel :

 Advantage: directly displayed

 Drawback: when created, we don’t know sometimes exactly how to

display it

■Another solution is to put these objects inside a GContainer

 Drawback: it is not possible to display it directly

 Advantages:

 Display management will be done by the final user

 We may use this GContainer several times inside a same GPanel (for example

several orbit parameters or several maneuvers laws)

Flight Dynamics sub-directorate DSO/DV

32

public class MyContainer extends GContainer implements GDisplay {

GButton but1;
GButton but2;
GButton but3;

public MyContainer () {
but1 = new GButton(“Button1");
but2 = new GButton(“Button 2");
but3 = new GButton(“Button 3");

}

public void generic() throws GException{
put(but1);
put(but2);
put(but3);

}

public void display() throws GException {
generic();

}

}

GContainer (2/2)

GPanel pan = new GPanel() {

MyContainer cont = new MyContainer();

public void display() throws GException {
generic();

}

public void generic() throws GException {
put(cont);

}

};

Use this interface for display

Flight Dynamics sub-directorate DSO/DV

33

Exercise 4 (1/2)

■Create the following GUI

using notions of:

 GContainer

 GUnit/GMetricUnit

 setConstraint()

Note : we could also use the

GPanTest class to test unitarily

the GManoeuvre class

Exercice 4 (2/2)

To do it, try to respect the following plan :

1. Create a Maneuver class including duration, thrust and isp attributes and
corresponding « getters »

2. Create a GManeuver class extending GContainer, implementing GDisplay
and corresponding to the Maneuver class

Create two constructors : one with no arguments (initial values will be 0.), the
second one with a Maneuver object as input.

Create a getter method returning a Maneuver object

3. Create a GScenario class extending GPanel including :

 a GChoice widget (for the amount of maneuvers)

 a loop on GManeuver widgets.

A getter method returning an ArrayList of Maneuver objects.

4. Create a main class including GButton widgets and the GScenario widget.
Flight Dynamics sub-directorate DSO/DV

34

Flight Dynamics sub-directorate DSO/DV

35

GReadWrite interface

■As for GENESIS, GENIUS

proposes a way to read and

write into files, consistent

with the display:

 By calling GReadWrite

interface

 By definition of the read()

and write() methods calling

the put() method

… and if we have the same

logic as for display, we put

all inside the generic()

method!

public class MyContainer extends GContainer
implements GDisplay, GReadWrite {

GEntryReal valR;
GEntryInt valI;
GEntryString valS;

public MyContainer () {
valR = new GEntryReal("Real value" , 0.);
valI = new GEntryInt("Integer value", 0);
valS = new GEntryString("Chain", "");

}

public void generic() throws GException {
put(valR);
put(valI);
put(valS);

}

public void display() throws GException {
generic(); }

public void read() throws GException {
generic(); }

public void write() throws Gexception {
generic(); }

}

Flight Dynamics sub-directorate DSO/DV

36

Data files management

■To read (or write) using GENIUS tools, we only need to open a file and

store inside the GENIUS corresponding object the data contained in this

file. To do it:

 We use static methods from class GFileManipulation

 The file will be in a specific XML (~ MADONA) format

Remark : the GENIUS object may contain itself other GENIUS objects etc…

MyGeniusObject obj = new MyGeniusObject (…);

GFileManipulation.readConfig (fileName, XMLRootName, obj, false);
GFileManipulation.writeConfig (fileName, XMLRootName, obj, true);

Must implement the GReadWrite interface

Flight Dynamics sub-directorate DSO/DV

37

File example

<Potential name="earthPotential">
<Real name="mu" unit="km^3/s^2">398600.64</Real>
<Real name="g0" unit="m/s^2">9.805</Real>
<Real name="rt" unit="km">6378.139</Real>
<Real name="ze" unit="km">120.0</Real>
<Real name="wt" unit="deg/s">0.004178071267451</Real>

</Potential>

■Possibility to differentiate the label displayed on the screen and the

XML variable name using method setNameInConfigFile

■Possibility to have data structures:

valR.setNameInConfigFile("nomXML");

public void generic() {
beginOfElement(structTypeFromEnum, "structureName");

put(…);
endOfElement(); }

public void read() { generic(); }
public void write() { generic(); }

Flight Dynamics sub-directorate DSO/DV

38

Back on modified data

■We saw that a "*" character appears when a data is modified by user by

comparison to a “saved” value. More precisely :

 The “saved” value corresponds either to a default value (for data loaded (resp.

saved) when reading (resp. writing) a file, it can be customized)

 When a unit is changed, as the data is not actually changed because the value

stored in memory is not changed => no "*" character appears

 If the user enter a “new” value which, in fact, corresponds to the saved value,

the "*" character disappears :

 Initial value = 0

 new value = 1 => "*" character appears

 “new” value = 0 => "*" character disappears

 It is possible to manage locally this mechanism using the following methods:

 setDisplayIsModifiedIndicator(DisplayIndicatorStatus), the status being « Automatic », « Always » or

« Never »

 setSavedValue(xxx) => if the saved value is the same as the displayed one, "*" character disappears

Flight Dynamics sub-directorate DSO/DV

39

Exercise 5

■Add to the previous

exercise the possibility

to load and store data

into files:

Flight Dynamics sub-directorate DSO/DV

40

Execute computation (1/2)

■ It is good to have a GUI ... but it has to be useful ! And most of the
time, it is used to launch a computation program.

■Several solutions are available:

 Launch a Java thread … but it could not be stopped asynchronously
(stop method is deprecated) except by stopping the GUI !!!

 Launch an executable independent of the GUI

■GENIUS makes available classes G[Java]CommandLauncher,
GExecButton and GExecMenuItem. They will launch:

 Either a Java class, if it owns a « main » static method

 Either an executable (for example issued from a Fortran compilation)

■A consequence is that entry data will only be passed by files.

Flight Dynamics sub-directorate DSO/DV

41

String path = System.getProperty("java.class.path");
cmd = new GJavaCommandLauncher (new String[] {"myClass", "args …"}, path,

 "Start computation", "Stop computation", null);
cmd.setCopyOutputToStdout(true);

GExecButton butExec = cmd.getGExecButton();

public void generic() throws GException {
...

put(cmd);
}

public void before(GEvent e) throws GFileManipulatorException {
if (e.contains(butExec)) {

if (! cmd.isRunning()) { // Program initialization if it is not yet running
if (valeursOK) { // Test if GUI values are OK

GFileManipulation.writeConfig("data.xml", "MAN", objetIhm);
}
else {cmd.setInhibited(true); }

}
}

}

public void after(GEvent e) {
if (e.getFinalSource() == cmd) {

// We launched the application
if (cmd.getProcessStatus() == ProcessStatus.FINISHED_NORMALY) {

System.out.println("Computation nominally finished ...");
}
else if (cmd.getProcessStatus() == ProcessStatus.FINISHED_BY_USER) {

System.out.println("Computation stopped by user ...");
}

}

Execute computation (2/2)

Class (or jar) owning a « main »

static method

We write the context file …

We can

catch

output

status

!!! Do not forget !!!

… or, finally, we do not launch it !

Specific button

Flight Dynamics sub-directorate DSO/DV

42

Exercise 6

■Add to the following exercise the

possibility to launch a

computation:

 Create

 a class to execute some computation

(for example sum of the thrusts

duration) : “subroutine mode”

 separation between computation

and GUI

 another one reading the XML file

then extracting maneuvers data

thanks to the previous created

getters and calling the computation

class : “batch mode”

GENIUS
GENeration of Interface for Users of Scientific S/W

Still more …

Flight Dynamics sub-directorate DSO/DV

44

Tooltips

■GENIUS proposes very simply the possibility to add tooltips using
the setToolTipText method

GEntryInt valI = new GEntryInt("Integer :", 123);

valI.setToolTipText("This is an integer");

Flight Dynamics sub-directorate DSO/DV

45

Validity controls (1/2)

■GENIUS gives the possibility to manage validity intervals (consistent with

SIRIUS requirements):

 Only for GEntryReal, GEntryInt, GEntryRealVector et GEntryIntVector widgets

 Possibility to get an error and/or warning information

 For real values, these validity controls of course take into account units

management

Tool tip when mouse passes

over the input area

Flight Dynamics sub-directorate DSO/DV

46

Validity controls (2/2)

GUnit[] unitDuration = {new GMetricUnit("mn"), new GMetricUnit("s")};

GUnit[] unitThrust = {new GMetricUnit("N")};

GUnit[] unitIsp = {new GMetricUnit("s")};

// Error control validity

durationIhm = new GEntryReal("Duration:", val1, unitDuration);

durationIhm.addGInterval(new GInterval(0., Double.POSITIVE_INFINITY));

// No validity control

thrustIhm = new GEntryReal("Thrust:", val2, unitThrust);

// Error and warning control validity

// Error if]-Inf,200[or[400,+Inf[

// Warning if [200,250[or[350,400[

// OK if[250,350[

ispIhm = new GEntryReal("Isp:", val3, unitIsp);

ispIhm.addGInterval(

new GInterval(250., 350., GInterval.Rule.INCLUSIVE, GInterval.Rule.EXCLUSIVE,

200., 400., GInterval.Rule.INCLUSIVE, GInterval.Rule.EXCLUSIVE));

Error if the value is out of

this interval

Opened/Closed interval

management

GCondensedStatusInterface

■GENIUS gives also the possibility to manage a “global” status of a set of

data via the GCondensedStatusInterface:

public class Data extends GPanel implements GCondensedStatusInterface {
…
@Override
public void updateCondensedStatus(GCondensedStatus arg) {
// durationIhm, thrustIhm and ispIhm are checked
arg.update(durationIhm , thrustIhm , ispIhm);

}
}

Flight Dynamics sub-directorate DSO/DV

47

GCondensedStatus status = new GCondensedStatus(new Data(…));

// We print the global status ...
System.out.println("Global status: “ + status.getStatus());

// We print the list of data with an ERROR status ...
for (int i = 0; i < status.getErrorComponentList().size(); i++) {
System.out.println(
"Error on "+status.getErrorComponentList().get(i).getNameInConfigFile());

}

Flight Dynamics sub-directorate DSO/DV

48

Exercise 6 (ct’d)

■Redo the exercise 6

adding validity

intervals to

maneuvers

characteristics

Flight Dynamics sub-directorate DSO/DV

49

Menu Bar

■As for a “classical” GUI, GENIUS proposes to have a main bar menu

with GMenuBar class (on the same principle as Swing JMenuBar)

public mainPanel() {

// We create menu items
itemLoad = new GMenuItem("Load");
itemSave = new GMenuItem("Save");
itemQuit = new GMenuItem("Quit");

// We create the “File” menu
// containing the previous items
menuFile = new GMenu("File");
menuFile.add(itemLoad);
menuFile.add(itemSave);
menuFile.add(itemQuit);

// We add “File” menu to the menu bar
bar = new GMenuBar(this);
bar.add(menuFile);

...

mainPanel pan = new mainPanel();

// We call the GFrame constructor with a supplementary
// argument with a GMenuBar onject
GFrame frame = new GFrame("GEx7", pan, pan.getMenuBar());

public void after(GEvent e) throws Exception {

if (e.contains(itemLoad)){
GFileManipulation.readConfig(...);

}
if (e.contains(itemSave)){

GFileManipulation.writeConfig(...);
}
if (e.contains(itemQuit)){

System.exit(0);
}

}

Flight Dynamics sub-directorate DSO/DV

50

Icons

■GENIUS also allows to get icons instead of buttons with label:

 Always use the GButton class

 Also applies to GExecButton

 Standard icons are proposed via GIcon class

butLoad = new GButton("Load", new GIcon (GIcon.Type.OPEN, 24));

butWrite = new GButton("Write", new GIcon (GIcon. Type.SAVE, 24));

cmd = new GJavaCommandLauncher(…);

cmd.setButtonIcons(new GIcon(GIcon.Type.START, 12),

new GIcon(GIcon.Type.STOP, 12));

butAppli = new GButton("Appli", String absoluteOrRelativePath);

Icons change

automatically when

launch/stop

Specific icon

Search for files

included into

genius.jar

Flight Dynamics sub-directorate DSO/DV

51

Exercise 6 (ct’d)

■Continue the exercise 6

by including a menu bar

and by using GENIUS

by default icons

Flight Dynamics sub-directorate DSO/DV

52

GClear interface

■As for the GReadWrite interface, GENIUS proposes a GClear
interface in order to reinitialize data:

 The data are then reinitialized to the default value given when the widget
has been instantiated

 There is the possibility to change this default value by using the
setDefaultValue method

public class GManoeuvre extends GContainer implements GDisplay, GReadWrite, GClear {
…

public void clear() throws GException { generic(); }
…

if (e.contains(butClear)){ obj.mainClear(); }

■At last, you will just have to call the mainClear method of the high
level object you want to clear (it will correctly call the put methods of
the lower level objects, as for display) …

Flight Dynamics sub-directorate DSO/DV

53

Exercise 6 (ct’d)

■Add to the exercise

6 the possibility to

clear data …

GENIUS
GENeration of Interface for Users of Scientific S/W

Some other « high level » widgets …

Flight Dynamics sub-directorate DSO/DV

55

GContextFileManagement class

■GENIUS proposes a class to simplify
the search of files into directories:

GContextFileManagement class

String prefix = "TEST_";
String suffix = ".xml";
String comment = "Test Files";
GFileFilter filter = new GFileFilter(prefix ,suffix ,comment);

String initDir = ".";
String xmlName = "Test";
GContextFileManagement gfm = new GContextFileManagement(initDir, xmlName , filter);

…

public void after(GEvent e) throws GFileManipulatorException {

if (e.contains(butLoad)) { gfm.selectLoadFile(obj, false); }
if (e.contains(butSave)) { gfm.selectSaveFile(obj, true); }

Widget to load or save

Flight Dynamics sub-directorate DSO/DV

56

The GComponentList class

■Allows to display list of widgets :

 These widgets must have a
constructor without arguments

 Possibility to duplicate an element
only if the Cloneable interface (and a
clone method) is implemented.

 « single » mode displaying only one
widget each time (case of complex
widgets)

 « multiple » mode displaying all the
widgets placed behind each other

GComponentList test;

test = new GComponentList("name", className.class, mode[true/false]);

test = new GComponentList("name", defaultObj, mode[true/false]);

…

test.setList (initList);

Flight Dynamics sub-directorate DSO/DV

57

Exercice 6 (ct’d)

■Modify the exercise 6 to use

GComponentList class

… and if possible :

 GContextFileManagement

 GBufferedTextArea

Flight Dynamics sub-directorate DSO/DV

58

Many other interesting items …

■ Some other widgets:

 GTabbedPane

 GTable (1D, 2D)

 GEntryConstant

 GDialog and GDetachedPanel

 GBufferedTextArea

■For plotting:

 GFreeChartXY

 GPlotPanel (gplot-1.9.1.jar)

 GGroundPlotPanel

■Some other functionality:

 Copy & Paste

 How to manage modified data as global status

 Shortcuts

 Internationalization

 How to update same data on different panels

 How to build a Standard Application GUI

 How to create your own widget

Flight Dynamics sub-directorate DSO/DV

59

Exercice 6 (ct’d)

■Based on the previous exercise, now use the Standard application frame !

See http://genius.cnes.fr/index.php/How_to_build_a_standard_application

Note : we need an image

file for About menu :

download from Web, set it

to a consistent size and put

it on src/main/resources

GENIUS
GENeration of Interface for Users of Scientific S/W

Conclusion

Flight Dynamics sub-directorate DSO/DV

61

Conclusion

 Main GENESIS functionalities still exist inside GENIUS product:

 Numbers input, conditional display, before/after, read/write into files,

units management, plots …

 Some (big) GENESIS drawbacks have disappeared:

 Specific syntax, object approach mixed with Fortran, generation delay …

 A lot of new widgets or functionalities are available:

 "*" character when a data is modified, validity controls, tables of data,

list of widgets, …

 Less concise than GENESIS (due to Java …) but possibility to

debug easily !

